问题的根源
Last updated
Last updated
前面的双重检查锁定示例代码的第7行(instance=new Singleton();)创建了一个对象。这一行代码可以分解为如下的3行伪代码。
memory = allocate(); // 1:分配对象的内存空间
ctorInstance(memory); // 2:初始化对象
instance = memory; // 3:设置instance指向刚分配的内存地址
上面3行伪代码中的2和3之间,可能会被重排序(在一些JIT编译器上,这种重排序是真实发生的,详情见参考文献1的“Out-of-order writes”部分)。2和3之间重排序之后的执行时序如下。
memory = allocate(); // 1:分配对象的内存空间
instance = memory; // 3:设置instance指向刚分配的内存地址
// 注意,此时对象还没有被初始化!
ctorInstance(memory); // 2:初始化对象
根据《The Java Language Specification,Java SE 7 Edition》(后文简称为Java语言规范),所有线程在执行Java程序时必须要遵守intra-thread semantics。intra-thread semantics保证重排序不会改变单线程内的程序执行结果。换句话说,intra-thread semantics允许那些在单线程内,不会改变单线程程序执行结果的重排序。上面3行伪代码的2和3之间虽然被重排序了,但这个重排序并不会违反intra-thread semantics。这个重排序在没有改变单线程程序执行结果的前提下,可以提高程序的执行性能。
为了更好地理解intra-thread semantics,请看如图3-37所示的示意图(假设一个线程A在构造对象后,立即访问这个对象)。
如图3-37所示,只要保证2排在4的前面,即使2和3之间重排序了,也不会违反intra-threadsemantics。
由于单线程内要遵守intra-thread semantics,从而能保证A线程的执行结果不会被改变。但是,当线程A和B按图3-38的时序执行时,B线程将看到一个还没有被初始化的对象。
回到本文的主题,DoubleCheckedLocking示例代码的第7行(instance=new Singleton();)如果发生重排序,另一个并发执行的线程B就有可能在第4行判断instance不为null。线程B接下来将访问instance所引用的对象,但此时这个对象可能还没有被A线程初始化!表3-6是这个场景的具体执行时序。
这里A2和A3虽然重排序了,但Java内存模型的intra-thread semantics将确保A2一定会排在A4前面执行。因此,线程A的intra-thread semantics没有改变,但A2和A3的重排序,将导致线程B在B1处判断出instance不为空,线程B接下来将访问instance引用的对象。此时,线程B将会访问到一个还未初始化的对象。
在知晓了问题发生的根源之后,我们可以想出两个办法来实现线程安全的延迟初始化。
1)不允许2和3重排序。
2)允许2和3重排序,但不允许其他线程“看到”这个重排序。
后文介绍的两个解决方案,分别对应于上面这两点。
表3-6