java-concurrent
  • 前言
  • Java多线程基础
    • 线程简介
      • 什么是线程
      • 为什么要使用多线程/线程使用的好处
      • 线程的优先级
      • 线程的状态
      • Daemon线程
    • 启动和终止线程
      • 构造线程
      • 启动线程
      • 中断线程
      • 过期的suspend()、resume()和stop()
      • 安全地终止线程
    • 多线程实现方式
    • 多线程环境下,局部变量和全局变量都会共享吗?
    • Java线程间的协助和通信
      • Thread.join的使用
      • volatile、ThreadLocal、synchronized3个关键字区别
      • volatile关键字
      • ThreadLocal关键字
      • synchronized关键字
      • Java线程等待和通知的相关方法
    • 实战应用
      • 连接池
      • 线程池
      • 如何计算合适的线程数
  • Java线程池与框架
    • Executor 框架
    • 自定义线程池——ThreadPoolExecutor
    • 线程池工具类(单例模式)
    • 关闭线程池
    • 合理地配置线程池
    • 线程池的监控
    • RejectedExecutionException产生的原因
    • SpringBoot配置线程池工具类
    • FutureTask详解
    • CompletionService讲解
    • Future、FutureTask、CompletionService、CompletableFuture区别
  • Java内存模型
    • Java 内存模型的基础
      • 并发编程模型的两个关键问题
      • Java内存模型的抽象结构
      • 从源代码到指令序列的重排序
      • 并发编程模型的分类
    • 重排序
      • 数据依赖性
      • as-if-serial语义
      • 程序顺序规则
      • 重排序对多线程的影响
    • 顺序一致性
      • 数据竞争与顺序一致性
      • 顺序一致性内存模型
      • 同步程序的顺序一致性效果
      • 未同步程序的执行特性
    • volatile内存语义
      • volatile的特性
      • volatile写-读建立的happens-before关系
      • volatile写-读的内存语义
      • volatile内存语义的实现
      • JSR-133为什么要增强volatile的内存语义
    • 锁内存定义
      • 锁的释放-获取建立的happens-before关系
      • 锁的释放和获取的内存语义
      • 锁内存语义的实现
      • concurrent包的实现
    • final域内存语义
      • final域的重排序规则
      • 写final域的重排序规则
      • 读final域的重排序规则
      • final域为引用类型
      • 为什么final引用不能从构造函数内“溢出”
      • final语义在处理器中的实现
      • JSR-133为什么要增强final的语义
    • happens-before
    • 双重检查锁定与延迟初始化
      • 双重检查锁定的由来
      • 问题的根源
      • 基于volatile的解决方案
      • 基于类初始化的解决方案
    • Java内存模型综述
      • 处理器的内存模型
      • 各种内存模型之间的关系
      • JMM的内存可见性保证
      • JSR-133对旧内存模型的修补
  • HashMap实现原理
    • 讲解(一)
    • 讲解(二)
    • HashMap原理(面试篇)
    • HashMap原理(面试篇二)
  • ConcurrentHashMap的实现原理与使用
    • 为什么要使用ConcurrentHashMap
    • ConcurrentHashMap的结构
    • ConcurrentHashMap的初始化
    • 定位Segment
    • ConcurrentHashMap的操作
    • ConcurrentHashMap讲解(一)
  • Java中的阻塞队列
    • 什么是阻塞队列
    • Java里的阻塞队列
    • 阻塞队列的实现原理
  • Fork/Join框架
    • 什么是Fork/Join框架
    • 工作窃取算法
    • Fork/Join框架的设计
    • 使用Fork/Join框架
    • Fork/Join框架的异常处理
    • Fork/Join框架的实现原理
    • ForkJoinPool的commonPool相关参数配置
  • java.util.concurrent包讲解
    • 线程安全AtomicInteger的讲解
    • CompletableFuture讲解
      • CompletableFuture接口详解
      • CompletableFuture与parallelStream()性能差异
      • CompletableFuture接口详解2
  • Java线程安全
    • 性能与可伸缩性
    • 解决死锁
    • 死锁定义
    • 如何让多线程下的类安全
    • 类的线程安全性定义
    • 实战:实现一个线程安全的单例模式
  • Java常用并发开发工具和类的源码分析
    • CountDownLatch
    • CyclicBarrier
    • Semaphore
    • Exchange
    • ConcurrentHashMap
    • ConcurrentSkipListMap
    • HashMap
      • HashMap源码实现及分析
      • HashMap的一些面试题
    • List
  • Java中的锁
    • 基础知识
    • 番外篇
    • synchronized 是可重入锁吗?为什么?
    • 自旋锁
  • Java多线程的常见问题
    • 常见问题一
Powered by GitBook
On this page
  • 组成部分
  • 技术背景
  • 功能
  • 应用范围

Was this helpful?

  1. Java多线程基础
  2. 实战应用

线程池

Previous连接池Next如何计算合适的线程数

Last updated 5 years ago

Was this helpful?

线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池线程都是后台线程。每个线程都使用默认的大小,以默认的优先级运行,并处于多线程单元中。如果某个线程在中空闲(如正在等待某个事件),则线程池将插入另一个来使所有处理器保持繁忙。如果所有线程池线程都始终保持繁忙,但队列中包含挂起的工作,则线程池将在一段时间后创建另一个辅助线程但线程的数目永远不会超过最大值。超过最大值的线程可以排队,但他们要等到其他线程完成后才启动。

组成部分

程序利用线程技术响应客户请求已经司空见惯,可能您认为这样做效率已经很高,但您有没有想过优化一下使用线程的方法。该文章将向您介绍服务器程序如何利用线程池来优化性能并提供一个简单的线程池实现。

1、线程池管理器(ThreadPoolManager):用于创建并管理线程池

2、工作线程(WorkThread): 线程池中线程

3、任务接口(Task):每个任务必须实现的接口,以供工作线程调度任务的执行。

4、任务队列:用于存放没有处理的任务。提供一种缓冲机制。

技术背景

在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁。如何利用已有对象来服务就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因。比如大家所熟悉的数据库连接池正是遵循这一思想而产生的,本文将介绍的线程池技术同样符合这一思想。

目前,一些著名的大公司都特别看好这项技术,并早已经在他们的产品中应用该技术。比如IBM的WebSphere,IONA的Orbix 2000在SUN的 Jini中,Microsoft的MTS(Microsoft Transaction Server 2.0),COM+等。

功能

应用程序可以有多个线程,这些线程在中需要耗费大量时间来等待事件发生。其他可能进入睡眠状态,并且仅定期被唤醒以轮循更改或更新状态信息,然后再次进入休眠状态。为了简化对这些线程的管理,.NET框架为每个进程提供了一个线程池,一个线程池有若干个等待操作状态,当一个等待操作完成时,线程池中的会执行。线程池中的线程由系统管理,程序员不需要费力于线程管理,可以集中精力处理应用程序任务。

应用范围

1、需要大量的线程来完成任务,且完成任务的时间比较短。 WEB服务器完成网页请求这样的任务,使用线程池技术是非常合适的。因为单个任务小,而任务数量巨大,你可以想象一个热门网站的点击次数。 但对于长时间的任务,比如一个Telnet连接请求,线程池的优点就不明显了。因为Telnet会话时间比线程的创建时间大多了。

2、对性能要求苛刻的应用,比如要求服务器迅速响应客户请求。

3、接受突发性的大量请求,但不至于使服务器因此产生大量线程的应用。突发性大量客户请求,在没有线程池情况下,将产生大量线程,虽然理论上大部分操作系统线程数目最大值不是问题,短时间内产生大量线程可能使内存到达极限,并出现"OutOfMemory"的错误。

堆栈
托管代码
辅助线程
服务器
休眠状态
线程
辅助线程
回调函数