java-concurrent
  • 前言
  • Java多线程基础
    • 线程简介
      • 什么是线程
      • 为什么要使用多线程/线程使用的好处
      • 线程的优先级
      • 线程的状态
      • Daemon线程
    • 启动和终止线程
      • 构造线程
      • 启动线程
      • 中断线程
      • 过期的suspend()、resume()和stop()
      • 安全地终止线程
    • 多线程实现方式
    • 多线程环境下,局部变量和全局变量都会共享吗?
    • Java线程间的协助和通信
      • Thread.join的使用
      • volatile、ThreadLocal、synchronized3个关键字区别
      • volatile关键字
      • ThreadLocal关键字
      • synchronized关键字
      • Java线程等待和通知的相关方法
    • 实战应用
      • 连接池
      • 线程池
      • 如何计算合适的线程数
  • Java线程池与框架
    • Executor 框架
    • 自定义线程池——ThreadPoolExecutor
    • 线程池工具类(单例模式)
    • 关闭线程池
    • 合理地配置线程池
    • 线程池的监控
    • RejectedExecutionException产生的原因
    • SpringBoot配置线程池工具类
    • FutureTask详解
    • CompletionService讲解
    • Future、FutureTask、CompletionService、CompletableFuture区别
  • Java内存模型
    • Java 内存模型的基础
      • 并发编程模型的两个关键问题
      • Java内存模型的抽象结构
      • 从源代码到指令序列的重排序
      • 并发编程模型的分类
    • 重排序
      • 数据依赖性
      • as-if-serial语义
      • 程序顺序规则
      • 重排序对多线程的影响
    • 顺序一致性
      • 数据竞争与顺序一致性
      • 顺序一致性内存模型
      • 同步程序的顺序一致性效果
      • 未同步程序的执行特性
    • volatile内存语义
      • volatile的特性
      • volatile写-读建立的happens-before关系
      • volatile写-读的内存语义
      • volatile内存语义的实现
      • JSR-133为什么要增强volatile的内存语义
    • 锁内存定义
      • 锁的释放-获取建立的happens-before关系
      • 锁的释放和获取的内存语义
      • 锁内存语义的实现
      • concurrent包的实现
    • final域内存语义
      • final域的重排序规则
      • 写final域的重排序规则
      • 读final域的重排序规则
      • final域为引用类型
      • 为什么final引用不能从构造函数内“溢出”
      • final语义在处理器中的实现
      • JSR-133为什么要增强final的语义
    • happens-before
    • 双重检查锁定与延迟初始化
      • 双重检查锁定的由来
      • 问题的根源
      • 基于volatile的解决方案
      • 基于类初始化的解决方案
    • Java内存模型综述
      • 处理器的内存模型
      • 各种内存模型之间的关系
      • JMM的内存可见性保证
      • JSR-133对旧内存模型的修补
  • HashMap实现原理
    • 讲解(一)
    • 讲解(二)
    • HashMap原理(面试篇)
    • HashMap原理(面试篇二)
  • ConcurrentHashMap的实现原理与使用
    • 为什么要使用ConcurrentHashMap
    • ConcurrentHashMap的结构
    • ConcurrentHashMap的初始化
    • 定位Segment
    • ConcurrentHashMap的操作
    • ConcurrentHashMap讲解(一)
  • Java中的阻塞队列
    • 什么是阻塞队列
    • Java里的阻塞队列
    • 阻塞队列的实现原理
  • Fork/Join框架
    • 什么是Fork/Join框架
    • 工作窃取算法
    • Fork/Join框架的设计
    • 使用Fork/Join框架
    • Fork/Join框架的异常处理
    • Fork/Join框架的实现原理
    • ForkJoinPool的commonPool相关参数配置
  • java.util.concurrent包讲解
    • 线程安全AtomicInteger的讲解
    • CompletableFuture讲解
      • CompletableFuture接口详解
      • CompletableFuture与parallelStream()性能差异
      • CompletableFuture接口详解2
  • Java线程安全
    • 性能与可伸缩性
    • 解决死锁
    • 死锁定义
    • 如何让多线程下的类安全
    • 类的线程安全性定义
    • 实战:实现一个线程安全的单例模式
  • Java常用并发开发工具和类的源码分析
    • CountDownLatch
    • CyclicBarrier
    • Semaphore
    • Exchange
    • ConcurrentHashMap
    • ConcurrentSkipListMap
    • HashMap
      • HashMap源码实现及分析
      • HashMap的一些面试题
    • List
  • Java中的锁
    • 基础知识
    • 番外篇
    • synchronized 是可重入锁吗?为什么?
    • 自旋锁
  • Java多线程的常见问题
    • 常见问题一
Powered by GitBook
On this page

Was this helpful?

  1. Java多线程基础
  2. 线程简介

为什么要使用多线程/线程使用的好处

执行一个简单的“Hello,World!”,却启动了那么多的“无关”线程,是不是把简单的问题复杂化了?当然不是,因为正确使用多线程,总是能够给开发人员带来显著的好处,而使用多线程的原因主要有以下几点。

(1)更多的处理器核心

随着处理器上的核心数量越来越多,以及超线程技术的广泛运用,现在大多数计算机都比以往更加擅长并行计算,而处理器性能的提升方式,也从更高的主频向更多的核心发展。如何利用好处理器上的多个核心也成了现在的主要问题。线程是大多数操作系统调度的基本单元,一个程序作为一个进程来运行,程序运行过程中能够创建多个线程,而一个线程在一个时刻只能运行在一个处理器核心上。试想一下,一个单线程程序在运行时只能使用一个处理器核心,那么再多的处理器核心加入也无法显著提升该程序的执行效率。相反,如果该程序使用多线程技术,将计算逻辑分配到多个处理器核心上,就会显著减少程序的处理时间,并且随着更多处理器核心的加入而变得更有效率。

(2)更快的响应时间

有时我们会编写一些较为复杂的代码(这里的复杂不是说复杂的算法,而是复杂的业务逻辑),例如,一笔订单的创建,它包括插入订单数据、生成订单快照、发送邮件通知卖家和记录货品销售数量等。用户从单击“订购”按钮开始,就要等待这些操作全部完成才能看到订购成功的结果。但是这么多业务操作,如何能够让其更快地完成呢?在上面的场景中,可以使用多线程技术,即将数据一致性不强的操作派发给其他线程处理(也可以使用消息队列),如生成订单快照、发送邮件等。这样做的好处是响应用户请求的线 程能够尽可能快地处理完成,缩短了响应时间,提升了用户体验。

(3)更好的编程模型

Java为多线程编程提供了良好、考究并且一致的编程模型,使开发人员能够更加专注于问题的解决,即为所遇到的问题建立合适的模型,而不是绞尽脑汁地考虑如何将其多线程化。一旦开发人员建立好了模型,稍做修改总是能够方便地映射到Java提供的多线程编程模型上。

Previous什么是线程Next线程的优先级

Last updated 5 years ago

Was this helpful?