java-concurrent
  • 前言
  • Java多线程基础
    • 线程简介
      • 什么是线程
      • 为什么要使用多线程/线程使用的好处
      • 线程的优先级
      • 线程的状态
      • Daemon线程
    • 启动和终止线程
      • 构造线程
      • 启动线程
      • 中断线程
      • 过期的suspend()、resume()和stop()
      • 安全地终止线程
    • 多线程实现方式
    • 多线程环境下,局部变量和全局变量都会共享吗?
    • Java线程间的协助和通信
      • Thread.join的使用
      • volatile、ThreadLocal、synchronized3个关键字区别
      • volatile关键字
      • ThreadLocal关键字
      • synchronized关键字
      • Java线程等待和通知的相关方法
    • 实战应用
      • 连接池
      • 线程池
      • 如何计算合适的线程数
  • Java线程池与框架
    • Executor 框架
    • 自定义线程池——ThreadPoolExecutor
    • 线程池工具类(单例模式)
    • 关闭线程池
    • 合理地配置线程池
    • 线程池的监控
    • RejectedExecutionException产生的原因
    • SpringBoot配置线程池工具类
    • FutureTask详解
    • CompletionService讲解
    • Future、FutureTask、CompletionService、CompletableFuture区别
  • Java内存模型
    • Java 内存模型的基础
      • 并发编程模型的两个关键问题
      • Java内存模型的抽象结构
      • 从源代码到指令序列的重排序
      • 并发编程模型的分类
    • 重排序
      • 数据依赖性
      • as-if-serial语义
      • 程序顺序规则
      • 重排序对多线程的影响
    • 顺序一致性
      • 数据竞争与顺序一致性
      • 顺序一致性内存模型
      • 同步程序的顺序一致性效果
      • 未同步程序的执行特性
    • volatile内存语义
      • volatile的特性
      • volatile写-读建立的happens-before关系
      • volatile写-读的内存语义
      • volatile内存语义的实现
      • JSR-133为什么要增强volatile的内存语义
    • 锁内存定义
      • 锁的释放-获取建立的happens-before关系
      • 锁的释放和获取的内存语义
      • 锁内存语义的实现
      • concurrent包的实现
    • final域内存语义
      • final域的重排序规则
      • 写final域的重排序规则
      • 读final域的重排序规则
      • final域为引用类型
      • 为什么final引用不能从构造函数内“溢出”
      • final语义在处理器中的实现
      • JSR-133为什么要增强final的语义
    • happens-before
    • 双重检查锁定与延迟初始化
      • 双重检查锁定的由来
      • 问题的根源
      • 基于volatile的解决方案
      • 基于类初始化的解决方案
    • Java内存模型综述
      • 处理器的内存模型
      • 各种内存模型之间的关系
      • JMM的内存可见性保证
      • JSR-133对旧内存模型的修补
  • HashMap实现原理
    • 讲解(一)
    • 讲解(二)
    • HashMap原理(面试篇)
    • HashMap原理(面试篇二)
  • ConcurrentHashMap的实现原理与使用
    • 为什么要使用ConcurrentHashMap
    • ConcurrentHashMap的结构
    • ConcurrentHashMap的初始化
    • 定位Segment
    • ConcurrentHashMap的操作
    • ConcurrentHashMap讲解(一)
  • Java中的阻塞队列
    • 什么是阻塞队列
    • Java里的阻塞队列
    • 阻塞队列的实现原理
  • Fork/Join框架
    • 什么是Fork/Join框架
    • 工作窃取算法
    • Fork/Join框架的设计
    • 使用Fork/Join框架
    • Fork/Join框架的异常处理
    • Fork/Join框架的实现原理
    • ForkJoinPool的commonPool相关参数配置
  • java.util.concurrent包讲解
    • 线程安全AtomicInteger的讲解
    • CompletableFuture讲解
      • CompletableFuture接口详解
      • CompletableFuture与parallelStream()性能差异
      • CompletableFuture接口详解2
  • Java线程安全
    • 性能与可伸缩性
    • 解决死锁
    • 死锁定义
    • 如何让多线程下的类安全
    • 类的线程安全性定义
    • 实战:实现一个线程安全的单例模式
  • Java常用并发开发工具和类的源码分析
    • CountDownLatch
    • CyclicBarrier
    • Semaphore
    • Exchange
    • ConcurrentHashMap
    • ConcurrentSkipListMap
    • HashMap
      • HashMap源码实现及分析
      • HashMap的一些面试题
    • List
  • Java中的锁
    • 基础知识
    • 番外篇
    • synchronized 是可重入锁吗?为什么?
    • 自旋锁
  • Java多线程的常见问题
    • 常见问题一
Powered by GitBook
On this page

Was this helpful?

  1. Fork/Join框架

Fork/Join框架的实现原理

ForkJoinPool由ForkJoinTask数组和ForkJoinWorkerThread数组组成,ForkJoinTask数组负责

将存放程序提交给ForkJoinPool的任务,而ForkJoinWorkerThread数组负责执行这些任务。

(1)ForkJoinTask的fork方法实现原理

当我们调用ForkJoinTask的fork方法时,程序会调用ForkJoinWorkerThread的pushTask方法

异步地执行这个任务,然后立即返回结果。代码如下。

public final ForkJoinTask<V> fork() {
    ((ForkJoinWorkerThread) Thread.currentThread())
    .pushTask(this);
    return this;
}

pushTask方法把当前任务存放在ForkJoinTask数组队列里。然后再调用ForkJoinPool的

signalWork()方法唤醒或创建一个工作线程来执行任务。代码如下。

final void pushTask(ForkJoinTask<> t) {
    ForkJoinTask<>[] q; int s, m;
    if ((q = queue) != null) {    // ignore if queue removed
    long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;
    UNSAFE.putOrderedObject(q, u, t);
    queueTop = s + 1;      // or use putOrderedInt
    if ((s -= queueBase) <= 2)
    pool.signalWork();
    else if (s == m)
    growQueue();
    }
}

(2)ForkJoinTask的join方法实现原理

Join方法的主要作用是阻塞当前线程并等待获取结果。让我们一起看看ForkJoinTask的join

方法的实现,代码如下。

public final V join() {
    if (doJoin() != NORMAL)
    return reportResult();
    else
    return getRawResult();
    }
    private V reportResult() {
    int s; Throwable ex;
    if ((s = status) == CANCELLED)
    throw new CancellationException();
    if (s == EXCEPTIONAL && (ex = getThrowableException()) != null)
    UNSAFE.throwException(ex);
    return getRawResult();
}

首先,它调用了doJoin()方法,通过doJoin()方法得到当前任务的状态来判断返回什么结

果,任务状态有4种:已完成(NORMAL)、被取消(CANCELLED)、信号(SIGNAL)和出现异常

(EXCEPTIONAL)。

·如果任务状态是已完成,则直接返回任务结果。

·如果任务状态是被取消,则直接抛出CancellationException。

·如果任务状态是抛出异常,则直接抛出对应的异常。

让我们再来分析一下doJoin()方法的实现代码。

private int doJoin() {
    Thread t; ForkJoinWorkerThread w; int s; boolean completed;
    if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
    if ((s = status) < 0)
    return s;
    if ((w = (ForkJoinWorkerThread)t).unpushTask(this)) {
    try {
    completed = exec();
    } catch (Throwable rex) {
    return setExceptionalCompletion(rex);
    }
    if (completed)
    return setCompletion(NORMAL);
    }
    return w.joinTask(this);
    }
    else
    return externalAwaitDone();
}

在doJoin()方法里,首先通过查看任务的状态,看任务是否已经执行完成,如果执行完成,

则直接返回任务状态;如果没有执行完,则从任务数组里取出任务并执行。如果任务顺利执行

完成,则设置任务状态为NORMAL,如果出现异常,则记录异常,并将任务状态设置为

EXCEPTIONAL。

PreviousFork/Join框架的异常处理NextForkJoinPool的commonPool相关参数配置

Last updated 5 years ago

Was this helpful?